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Abstract

The Stanford Institute for the Quantitative Study of Society (SIQSS) has conducted a time diary study

for Internet use since 2000. This study splits ’yesterday’ into six time blocks, and randomly draws one

hour from each block to ask respondents about their detailed activities. Imputation methods are then

used to estimate the whole day activities that will be used for statistical analysis. In this paper, we

propose a new imputation method based on a Markov Chain Regression Model (MCRM) for the SIQSS

study design. MRCM characterizes the data dependence structure by a Markov Chain and allows the

transition probabilities to depend on demographic variables. We demonstrate by theoretical analysis

and simulation studies that MCRM can produce consistent estimation of population mean, population

variance and univariate regression equations. On the other hand, we show that naive imputation

methods without correctly modelling dependence structure could produce incorrect estimation of the

population variance and regression equation. MCRM can also be extended to impute two activities

simultaneously to model the relationship of two imputed activities.
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1 Introduction

Since 2000, the Stanford Institute for the Quantitative Study of Society (SIQSS) has conducted

a time diary study for Internet usage using a nationally representative survey panel. Unlike

traditional time diaries based on 24-hour design, this study splits ’yesterday’ into six blocks

(night, early morning, late morning, afternoon, early evening and late evening), and randomly

draws one hour (defined as an interval in the paper) from each block to ask respondents about

their detailed activities. Demographic background factors, such as education, marry status, age,

household composition, are also collected for each respondent to allow for further multivariate

analysis. The time spent on an activity in each surveyed hour may take seven possible values

from zero to six: zero if no such activity, one if the time is between zero and ten minutes, and so

on. Figure I illustrates the sampling scheme. For more details, please refer to Nie and Erbring

(2002), Nie and Hillygus (2002).

The key advantage of the six-hour design over usual 24-hour design is that, it allows the

respondents to precisely recall their activities in much greater details without being exhausted.

Hence, this design provides data of high quality to examine the relationships between Internet

use and time spent in other social activities, and the relationship among the time spent on

different Internet activities.

While data is collected for only six of the twenty-four hours for the respondents, in practice

one is often interested in obtaining the information for the whole day. This can be accomplished

by imputation methods. For simplicity, we use Xn,t to denote the time spent on a given activity

in tth interval for subject n, and define Yn =
∑24

t=1 Xn,t to be the total time spent on the activity

in the day.

The simplest imputation method is to estimate the activity in each missing interval as the

observed value in the same block. The implicit assumption is that the intervals in one time

block are fully correlated. We call this naive method block imputation or BI. Another extreme

is to assume that Xn,t are independent across time. Hence, each Xn,t is modelled as a function

of t and some demographic variables Zn: Xn,t = α + β′Zn + λ(t). Models are fitted using

the data in the surveyed intervals. The unobserved activities are imputed using the estimated

marginal model. Because we consider only the marginal distribution without considering the

correlation structure, we call this strategy marginal imputation or MI.

Obviously, both strategies incorrectly model the dependence structure of {Xn,t, t = 1, · · · , 24}.
As a result, they give incorrect estimates of population variance var(Yn), which can be prob-

lematic for further hypothesis testing, for example, of the mean activity levels between two

populations. Moreover, both strategies estimate incorrect regression models.
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The purpose of this paper is (1) to develop an appropriate probability framework to estimate

the joint distribution of the missing intervals conditioning on observations, and (2) to provide a

consistent estimate of the population variance, the coefficients and the associated t-test statistics

for a univariate regression analysis when imputed measures are involved.

The paper is organized as follows. In section 2, we describe three problems related with

data imputation that will be addressed in the paper. In section 3, we develop a Markov Chain

Regression Model (MCRM) to characterize the dependence structure of the activities in twenty

four intervals, and then develop methods for estimating the population variance and regression

equation based on the estimated MCRM. In section 4, we demonstrate by simulations the

validity of the model estimation procedure and the ability to correctly estimate the population

variance and regression equations. We conclude by discussing the underlying model assumptions

and possible extensions in Section 5.

2 The statement of problem

Throughout this paper, we consider one activity. Let Xn,t denote the observation in the tth

hour for respondent n, where 1 ≤ n ≤ N , 1 ≤ t ≤ T = 24 and Xn,t ∈ {0, 1, · · · , 6}. Xn,t = 0

if he spends no time on the activity in the tth hour. Xn,t = k if he spends (10× (k − 1), 10×
k] minutes. For the nth respondent, six hours (tn1 , · · · , tn6 ) are randomly generated from six

blocks respectively and the activities are reported for these selected hours. The observation

for the nth respondent is {tn1 , · · · , tn6 , Xn,tn1
, · · · , Xn,tn6

,Zn}, where Zn = (zn,1, · · · , zn,m) denotes

m demographic variables, such as education level, marry status, etc. Our main interest is to

develop methods to impute Yn =
∑T

t=1 Xn,t, the total time spent on the activity yesterday,

and to provide valid inferences when Yn is involved in statistical analysis. Particularly, three

problems will be discussed in the paper.

The first problem is to estimate the population variance var(Yn). This is critical when

we detect the difference between two years or two populations. Statistics theory indicates

that BI tends to overestimate var(Yn), hence the power of detecting difference will be reduced

substantially. On the other hand, MI tends to underestimate var(Yn), hence it detects spurious

difference with inflated probability than expected.

The second problem concerns the univariate regression analysis with Yn as the explanation

variable. Suppose Wn is generated according to a linear model: Wn = α + βYn + εn, where

ε ∼ N(0, σ2
0). Given the incomplete data {(Xn,tn1

, · · · , Xn,tn6
,Wn), n = 1 · · · , N}, we need to

estimate β and compute the associated t-statistics.
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The third problem also concerns the univariate regression analysis but with Y as the response

variable. Let Gn be the explanation variable. Suppose Xn,t = αt + βtGn + εn,t for t = 1, · · · , T ,

where εn = (εn,1, · · · , εn,T ) follows a multivariate Gaussian distribution. It follows that Yn =
∑T

t=1 αt+(
∑T

t=1 βt)Gn+
∑T

t=1 εn,t. We need to estimate β =
∑T

t=1 βt and compute the t-statistics

from the incomplete observations.

3 Methods

3.1 Model specification

For respondent n, the observed data is {tn1 , · · · , tn6 , Xn,tn1
, · · · , Xn,tn6

,Zn}. We model Xn,t as an

ordinal variable. We assume that the current value of Xn,t depends only on the value one step

ago, i.e.

P{Xn,t|Xn,t−1, · · · , Xn,0} = P{Xn,t|Xn,t−1}. (1)

Under this assumption, {Xn,t, t = 1, · · · , T} forms a Markov chain of the first order with finite

states {0, 1, · · · , K = 6}. The chain is characterized by the initial distribution and the transition

probability matrices. To make the model flexible, we model these probabilities as functions of

demographic variables Zn and time t.

Define P n
ij(t) = P{Xn,t ≤ j|Xn,t−1 = i} to be the accumulated probability at state j for

i ∈ {0, · · · , K} and j ∈ {0, · · · , K − 1}. To allow the transition probability to depend on the

demographic variables Zn and time t, we parameterize P n
ij(t) as

P n
ij(t) =

exp
{ ∑j

k=0 µik + λt + Z′nβ
}

1 + exp
{ ∑j

k=0 µik + λt + Z′nβ
} . (2)

Here, βi ∈ R, µi0 ∈ R, but µij ≥ 0 for j > 0 to guarantee P n
ij(t) ≥ P n

i(j−1)(t). Under this

parametrization, we have

log
P (Xn,t > j − 1|Xn,t−1 = i)

P (Xn,t ≤ j − 1|Xn,t−1 = i)
=

j∑

k=0

µik + λt + Z′nβ. (3)

The transition probability aij(t) = P{Xn,t = j|Xn,t−1 = i} from time t− 1 to t is then

an
ij(t) =





P n
i0(t) if j = 0;

P n
ij(t)− P n

i(j−1)(t) if j ∈ {1, · · · , K − 1}
1− P n

i(K−1)(t) if j = K.

We use An
t to denote the transition probability matrix with [An

t ]ij = an
ij(t).
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Similarly, we define initial probability distribution qn
j = P{Xn,0 = j} to be

qn
j =





Qn
0 if j = 0;

Qn
j −Qn

j−1 if j ∈ {1, · · · , K − 1}
1−Qn

K−1 if j = K,

where

Qn
j = P{Xn,0 ≤ j} =

exp
{ ∑j

k=0 νk + Z′nγ
}

1 + exp
{ ∑j

k=0 νk + Z′nγ
} (4)

with ν0 ∈ R, γk ∈ R and νj > 0 for j > 0. Define Qn = (qn
0 , · · · , qn

K).

Whenever the parameters (µij, νj, β, γ, λt) are estimated, we can compute the initial prob-

ability vector Qn and the transition matrices (An
1 , · · · , An

T−1), hence fully characterize the joint

distribution of {Xn,t}.

3.2 Likelihood function

When data are observed at all twenty four hours, the likelihood for the nth respondent is:

Ln = P{Xn,1 = x1, · · · , Xn,T = xT} = qn
x1

an
x1,x2

· · · an
x(T−1),xT

from the definition of the first order Markov Chain. For our sampling design with missing values,

the available observations form a reduced Markov chain. See Figure 2 for illustration. The

transition probability matrices of the reduced Markov chain can be expressed as the product of

the transition probability matrices of the original Markov chain. Formally, let Bn(t1, t2) denote

the transition probability matrix from t1 to t2 for subject n, then

Bn(t1, t2) = An
t1
· · ·An

t2−1. (5)

Let bn
ij(t1, t2) = [Bn(t1, t2)]ij = P{Xn,t2 = j|Xn,t1 = i}. Then, the likelihood for observation

{tn1 , · · · , tns , Xn,tn1
= x1, · · · , Xn,tns = xs} is given by:

Ln =
{ K∑

k=0

qn
k bkx1(1, t

n
1 )

}
bn
x1,x2

(tn1 , t
n
2 ) · · · bn

xs−1,xs
(tns−1, t

n
s ), (6)

which is a function of (µij, νj, β, γ, λt).

3.3 Model estimation

The model parameters are estimated by maximizing the log likelihood function. Let m denote

the number of covariates. Our model has 70 + 2m parameters: 42 µij, 22 λt, 6 νj, β and γ.
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Here, we have set λ23 = 0 to make the parameters identifiable. The constraints are: µij > 0

for j > 0, νj > 0 for j > 0. These positive constraints are eliminated by replacing µij, νj

with eµij , eνj . Under such parametrization, estimating the model parameters reduces to solve

an unconstrained nonlinear optimization problem.

Because of the complex model structure and large number of parameters, it’s tedious an-

alytically and expensive computationally to calculate Hessian matrix. Hence, we use BFGS

quasi-Newton method. The idea of the method is to approximate the Hessian matrix using the

information of previous gradient vectors. The resulting matrix is positively definite, hence, it

moves toward the maximum of the log likelihood function in each iteration. Specially, we use

a limited memory BFGS (Zhu, Byrd and Nocedal, 1997) routine to search for the maximizer

of the log likelihood function. The routine can quickly approach the maximizer. But in our

applications, it may stop without meeting the stopping criterion that the norm of the gradient

vector is sufficiently small. We take the output from the limited memory BFGS as input and

restart the BFGS Quasi-Newton’s iteration procedure combined with Armijo-Goldstein linear

search. Numerical experiments demonstrate that this strategy can find the maximizer satisfying

the stopping criterion quickly. Appendix I gives the detail of computing the gradient vector.

3.4 Data imputation based on MCRM

The goal of this section is to develop methods based on the estimated Markov Chain to address

the three problems stated in Section 2.

Estimate population variance var(Y ): In Algorithm 3.2, we propose to use multiple

imputation procedure (Rubin, 1976, Little and Rubin, 1987) to estimate var(Y ) based on a

Gibbs sampling algorithm that is described in Algorithm 3.1. In the algorithms, we use X+
n to

denote the observed data, X−
n to denote the unobserved data and {s1, · · · , sT−} to denote the

hours without been surveyed. The idea of multiple imputation is that we draw the missing data

X−
n conditioning on the observed data X+

n multiple times and average the variance estimations

from all imputations. The Gibbs sampling algorithm is used to sample X−
n conditioning on X+

n

because the conditional probability is very complicated. For general theory and applications

of Gibbs sampling, please refer to Liu (2001). Under mild conditions, we show in Appendix II

that this procedure produces a consistent estimation, i.e. limN,R→∞ v̂arN,R(Y ) = var(Y ) a.s..

Estimate linear regression: We first consider estimating Wn = α + βYn + εn where Yn

serves as the explanation variable. In Appendix III, we prove that a consistent estimation of β

6



Algorithm 3.1: Simulate Yn ∼ P (Yn|X+
n ) using Gipps sampling

Compute initial probability vector Qn based on MRCM;

Compute transition probability matrix An
t for t = 1, · · · , T based on MRCM;

For each t ∈ {s1, · · · , sT−}, set xt = arg maxk P{Xn,t = k|X+
n } as initial states;

For r = 1 : 2000

Randomly choose t from {s1, · · · , sT−},
Draw Xn,t ∼ P{Xn,t = k|Xn,1, · · · , Xn,t−1, Xn,t+1, · · · , Xn,T}.

End

Compute Yn =
∑T

t=1 Xnt.

is obtained by imputing Yn using conditional expectation imputation:

Ŷn =
T∑

t=1

E(Xn,t|X+
n ). (7)

It can be shown that, the t-statistic for testing H0 : β = 0 in a univariate linear regression

is given by

t =
β̂√

var(Wk)/var(Ŷk)− 1
.

Because β̂ → β and var(Ŷk) ≤ var(Yk), the t-statistic is asymptotically underestimated. We can

replace var(Ŷk) with v̂arN,I(Yk) produced from Algorithm 3.2 to derive the correct t-statistic:

t =
β̂√

var(Wk)/v̂arN,I(Yk)− 1
. (8)

We then consider estimating β =
∑T

t=1 βt in linear equation Yn =
∑T

t=1 αt + (
∑T

t=1 βt)Gt +
∑T

t=1 εn,t (problem 3 in Section 2). Using similar technique to Appendix III (details omitted), we

can prove that a consistent estimation of β is obtained using conditional expectation imputation

(7). Similarly, the following formula produces a correct value of t-statistic:

t =
β̂√

v̂arN,I(Yk)/var(Gk)− 1
. (9)
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Algorithm 3.2 Estimate var(Y ) using multiple imputation.

For r = 1 : R

For n = 1 : N

Draw X−
n ∼ P (X−

n |X+
n ) using Gipps sampling (Algorithm 3.1)

Compute Y r
n = X−

n + X+
n

End

Compute σ̂2
r =

∑N
n=1(Yn,r − Ȳ r)2/N with Ȳ r =

∑N
n=1 Yn,r/N

End

Estimate var(Y ) as v̂arN,R(Y ) =
∑R

i=1 σ̂2
r/R.

4 Simulation study

4.1 Program

The algorithms were implemented in a C program MCRM 1.0 running under Linux platform.

4.2 Validity of the model estimation procedure

We ran two simulations to validate our model estimation procedure.

Simulation I: We simulate 5000 respondents, each of which has 10 demographic variables

generated as independent, normally distributed numbers. µij = 0.5 for i = 0, · · · , 6, j = 1, · · · , 5,

µi0 = −2, ν0 = 2, βj = γj = 0.5, λt = 0. For the nth subject, we compute the initial probability

vector Qn = (qn
0 , · · · , qn

6 ) and draw Xn
1 = x1 according to Qn. Then, we compute An

1 and draw

Xn
2 = x2 according to P{Xn

2 = x2|Xn
1 = x1} = [An

1 ]x1,x2 . Similarly, we compute An
2 , · · · , An

23

and sequentially simulate Xn
2 , · · · , Xn

23 according to An
k conditioning on the previous step. After

simulating the full data for the nth subject, we randomly select one hour in each of the six

blocks and mask all other hours.

Simulation II: To test the algorithm with a more realistic parameter specification, we first

fit our model with TV time as the target variable using 2006 survey data with 5126 subjects

to obtain estimate (µij, νj, β, γ, λt). We include 20 dummy variables into analysis formed from

the demographic variable such as education, marry status, race, etc. We use these covariates

and the estimated parameters to simulate 5216 subjects and mask the observations according

to the missing pattern in the real data. Hence, the simulated data has a realistic parameter

specification and identical missing pattern to our 2006 data set. We then re-estimate these

8



model parameters to get (µ′ij, ν
′
j, β

′, γ′, λ′t) and compare them with (µij, νj, β, γ, λt).

For both simulations, we set 0.1 as the starting values for all parameters. Both models

were estimated within 20 minutes on a Linux server powered by an Intel 5160 CPU. We plot

the estimated values against the true values on a scatter plot. The parameters are correctly

estimated if the points lie on or close to the line y = x.

Results: All parameters were accurately estimated for simulation I (the left panel in Figure

3). In simulation II, all parameters (µij, β, λt) related with the transition probabilities were

correctly estimated, but the parameters (νj, γ) related with the initial distribution were poorly

estimated. This is expected considering the fact that the target variable other than sleeping is

exactly zero because most of the respondents are sleeping from 12:00PM to 6:00AM. For our

data imputation methods based on a Marlov Chain, these parameters have effect only on a few

hours prior to the first observation, so it won’t degrade our whole procedure.

4.3 Data imputation and statistical inferences

In this section, we use simulations to demonstrate the improvement of our new method MCRM

over BI and MI. We will compare the performance in terms of the prediction error, the estima-

tion of population variance and a univariate linear regression.

Simulation III: Model settings are identical to simulation II. We compare the prediction

error rate and the estimation of population variance of these methods. We use Xn,t to denote

the true value and X̂n,t to denote the imputed value. Let Yn =
∑T

t=1 Xn,t and Ŷn =
∑T

t=1 X̂n,t.

We define two criteria

C1 =
1

18N

N∑

n=1

T∑

t=1

(X̂n,t −Xn,t)
2 and C2 =

1

N

N∑

n=1

(Ŷn − Yn)2.

Hence, C1 is the average error square for each hour and each person, C2 is the average error

square for one day and each person.

The simulation results in Table 1 show that our MCRM procedure based on (7) has the

lowest prediction error (both C1 and C2) compared to BI and MI. In addition, all methods

correctly estimated the population mean, but only MCRM can correctly estimate the population

variance.

Simulation IV: Model settings are identical to simulation II. In addition, we generate

Wn = α + βYn + εn with α = β = 1 and εn i.i.d. N(0, 2002). Based on the complete data of

5216 samples, β̂ is 1.02 and the t-statistic is 44.2. We then ran linear regression using Wn as the

response variable and Ŷn as the explanation variable. Here, Ŷn is imputed using three methods:

BI, MI and MCRM. We compare the estimated regression coefficients and the t-statistics tβ.
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Results are presented in table 2. The β̂ and associated t-statistic tβ produced from our MCRM

are very close to those produced from the full data. BI tends to underestimates β while MI

tends to overestimates β. In addition, both BI and MI tend to underestimate the tβ.

5 Conclusion and discussion

In this paper, we develop a method for imputing missing data in SIQSS time diary study. We

also develop methods for estimating population variance and univariate linear regression. It’s

worthwhile to point out that, any general imputation method without considering the special

data structure may create more problems than it solves, e.g. biasing the variance estimation,

regression analysis and hypothesis testing. A well designed imputation procedure requires (1)

to specify a probability model on the complete data with appropriate marginal distribution and

dependence structure and (2) to develop imputation method based on the probability model.

Our MCRM is such a good candidate for SIQSS time diary study because (1) it explicitly

models the ordinal target variable to ensure an appropriate marginal distribution, (2) it uses

the first order Markov Chain to model the dependence of the 24 hour data, (3) it allows the

initial probability and transition probability of the Markov Chain to depend on demographic

variables to reflect individual’s effect. As the result, it produces consistent estimation for

variance, regression equations in our statistical analysis of time data.

Markov Chain models have been widely used in longitudinal data analysis to explore the the

relationship between the outcome variable and explanation variables. For example, Zeger, Liang

and Self (1985) proposed a first order Markov Chain model for binary response by modelling

the marginal distribution as a logistic function of covariates. Cox (1970) proposed to model

the transition probability for binary responses. Our MCRM procedure adopts Cox’s approach

to model the transitional probability but for ordinal responses. Moreover, this model allows us

to compute the exact likelihood function even when majority (75%) of the data are missing.

As Zeger, Liang and Self (1985) pointed out, the first order Markov Chain model might

not be adequate if the actual data have dependence structure of longer distance. In principal,

a higher order Markov Chain Regression Model can be developed similarly for imputation

purpose. However, the computational burden for fitting even a second order Markov model

would be prohibitive when a lot of missing values are present. On the other hand, modelling

longer distance dependence provides little additional information for such a sparse observation

pattern. Hence, our MCRM of the first order is a tradeoff between model complexity and

efficiency.
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In this paper, we considered imputing one target variable at a time. MCRM can also be

extended to impute multiple target variables jointly. For example, if email and TV time are

jointly modelled, then Xn,t may take (6 + 1) × 7/2 = 21 states, each of which represents one

combination of email time and TV time with the restriction that the summation doesn’t exceed

6. The joint imputation would be particularly useful when exploring the relationship between

the two imputed activities.
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Appendix I: Compute the gradient vector

According to (6), the overall log likelihood function l =
∑N

n=1 log Ln can be expressed as the

summation of

log P{Xn,t2 = j|Xn,t1 = i} = log bn
ij(t1, t2)

and

log P{Xn,t = i} = log
{ K∑

k=0

P{Xn,1 = k}P{Xn,t = i|Xn,1 = k}
}

= log
{ K∑

k=0

pn
kbki(1, t)

}
.

Hence, to compute the gradient vector, we only need to compute

∂bn
ij(t1, t2)

∂µkl

,
∂bn

ij(t1, t2)

∂λt

,
∂bn

ij(t1, t2)

∂βk

(10)

and
∂pn

i

∂νk

,
∂pn

i

∂γk

. (11)

Computing (7) is tedious but straightforward according to the definition of pn
i . Calculation of

(6) is based on the fact:

∂Bn(t1, t2)

∂y
=

∂{An
t1
An

t1+1 · · ·An
t2−1}

∂y

=
∂An

t1

∂y
An

t1+1 · · ·An
t2−1 + · · ·+ An

t1
An

t1+1 · · ·
∂An

t2−1

∂y
,

where [∂An
t /∂y]ij = ∂an

ij(t)/∂y.

Now we consider the computational cost for computing the derivative. When t2 − t1 = 0

(no gap), we need to compute the derivative once, the algorithm complexity is O(1). When

t2− t1 = d, we need to compute derivatives for 2K +(d−3)K2 times. Therefore, the algorithm

is significantly slow for a long gap.

Appendix II

Suppose Xn = (Xn,1, · · · , Xn,T ) ∼ f(x1, · · · , xT ). Let Yn =
∑T

t=1 Xn,t. Denote X+ as observed

information. For each n = 1, · · · , N , draw R i.i.d. samples Y 1
n , Y 2

n , · · · , Y R
n ∼ P (Y |X+

n ) that

has mean µ(X+
n ) and variance λ2(X+

n ). Define

σ2
r =

1

N

N∑

n=1

(Y r
n − Y

r
)2, where Y

r
=

1

N

∑

n=1

Y r
n .

Let v̂arN,R(Y ) =
∑R

r=1 σ2
r/R. Then limN,R→∞ v̂arN,R(Y ) = var(Y ).

12



Proof: It’s easy to show that

v̂arN,I(Y ) =
1

R

R∑

r=1

σ2
r =

1

N

N∑

n=1

(
1

R

R∑

r=1

(Y r
n )2

)
− 1

N2

∑
n1,n2

(
1

R

∑
r

Y r
n1

Y r
n2

)
. (12)

Hence,

lim
N,R→+∞

v̂arN,I(Y ) = lim
N→+∞

1

N

N∑

n=1

(
lim

R→+∞
1

R

R∑

r=1

(Y r
n )2

)
− lim

N→+∞
1

N2

∑
n1,n2

(
lim

R→+∞
1

R

∑
r

Y r
n1

Y r
n2

)

= lim
N→+∞

1

N

N∑

n=1

E(Y r
n )2 − lim

N→+∞
1

N2

∑
n1,n2

EY r
n1

Y r
n2

= lim
N→+∞

1

N

N∑

n=1

(
µ2(X+

n ) + λ2(X+
n )

)
− lim

N→+∞

(
1

N

∑
n

µ(X+
n )

)2

= Eµ2(X+) + Eλ2(X+)−
(
Eµ(X+)

)2

= var(µ(X+)) + Eλ2(X+).

Because µ(X+) = E(Y |X+) and λ2(X+) = var(Y |X+) by definition, we have

lim
N,R→+∞

v̂arN,I(Y ) = var(E(Y |X+)) + E[var(Y |X+)] = var(Y )

according to the well known formula var(y) = var(E(y|x)) + E(var(y|x)).

Appendix III

Suppose Xn = (Xn,1, · · · , Xn,T ) ∼ f(x1, · · · , xT ). Let Yn =
∑T

t=1 Xn,t and Ŷn = E(Yn|X+
n ) =

∑T
t=1 E(Xn,t|X+

n ), where X+
n is the observed information for the nth sample. Suppose Wn =

α + βYn + εn, where ε ∼ (0, σ2
0). Let β̂ be the estimated coefficient β in a regression analysis

using Ŷn. Then, β̂ → β a.s. as N goes to infinity.

Proof: According to the standard results of univariate linear regression,

β̂ =

∑N
k=1(Wk − Z̄)(Ŷk − Ȳ )

∑N
k=1(Ŷk − Ȳ )2

=
β

∑N
k=1(Yk − Ȳ )(Ŷk − Ȳ ) +

∑N
k=1 εk(Ŷk − Ȳ )

∑N
k=1(Ŷk − Ȳ )2

.

As N goes to infinity, β̂ converges to

β
cov(Yk, Ŷk)

var(Yk)
.
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To prove β̂ → β a.s., it suffices to prove cov(Yk, Ŷk) = var(Ŷk), which follows from the properties

of conditional expectation:

cov(Yk, Ŷk) = cov(Yk, E(Yk|X+
k ))

= E[YkE(Yk|X+
k )]− EYkE[E(Yk|X+

k )]

= E
{
E[YkE(Yk|X+

k )]|X+
k

}
− (EYk)

2

= E[E(Yk|X+
k )]2 − E2[E(Yk|X+

k )]

= var[E(Yk|X+
k )]

= varŶk.

This completes the proof.
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Table 1: Comparison of prediction error, population variance estimations.

complete data BI MI MCRM

C1 – 345.5 225.5 187.9

C2 – 11334 6609 4760

mean(Y ) 152.4 151.7 151.7 151.6

var(Y ) 15375 26891 5364 15160

Table 2: Comparison of univariate regression analysis

complete data BI MI MCRM

β̂ 1.02 0.58 1.31 1.00

tβ 45.06 31.6 32.1 44.2

15



 

Figure 1: Illustration of the sampling design of SIQSS for four respondents. The whole day is split into six 

blocks. The first block contains six hours from 12:00AM and to 6:00AM. The last two time blocks contain 

three hours. Other three bocks contain four hours. Each hour will be referred as an “interval” in the paper.  

For each respondent, one and only one interval is randomly selected from each block. The survey is then 

done in the selected six intervals. Different respondents may be surveyed in different combinations of 

intervals. 
 

 

Figure 2: In this example,  is a Markov Chain. The observation  

forms a reduced Markov Chain. The transition probability matrices are  

, 

},,{ 110 XX L },,,,{ 118731 XXXXX
,3,22,13,1 AAB =

7,66,55,44,37,3 AAAAB = ,, 11,1010,99,811,88,78,7 AAABAB == where is the transition matrix of the 

original Markov Chain chain.  
1, +iiA

 
 
 
 
 



 
 

Figure 3: Each point represents a pair of true parameter and estimated parameter. One parameter is 

accurately estimated if the point is close to the xy =  line. In simulation I, parameters are accurately 

estimated. In simulation II, all 64 parameters related with transition probabilities (labeled as·) are accurately 

estimated but some of the parameters related with initial probabilities (labeled as ×) are poorly estimated. 


