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Abstract 
 
The presentation will report on some experiments in the classification of Monte Carlo character 
sequences using dynamic programming methods and some alternatives, including time budgets. 
The test sequences are generated with a mixture of probabilistic patterns and noise and the 
presentation will report on the relative reliability of different classification strategies according 
to the difficulty of the classification problem. Synthetic character sequences are used because 
they can be created according to known rules and thus can identify the most successful among 
competing methods. As dynamic programming algorithms are not well known in social sciences, 
this set of experiments offers evidence of their reliability in the classification of sequences of 
events. The paper is mainly based on the report in Wilson (2006) with some extensions. 
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1.  Introduction 
 
This paper describes a number of tests of reliability of measures of character sequence similarity. 
The procedure is to generate a number of sets of synthetic sequences that display known patterns 
and compare the classifications produced by different analytical methods to see which retrieves 
the know patterns most accurately. The experiments include an alignment strategy, a measure 
based on Hamming similarity and a measure based on counts of characters. The latter is 
analogous to a time budget for the synthetic sequences. Success in finding known patterns is 
interpreted as indicating that a classification method is reliable 
 
Any mathematical procedure will produce some result if data is supplied as required. 
Researchers using relatively new procedures have to assure themselves and the wider research 
community that the results are valid and reliable, and that such results are not generated by the 
methods themselves. Consequently, while interesting and suggestive results have been reported, 
it is important to address the question of reliability and validity of the methods.  
 
Social researchers frequently face problems in measuring abstract concepts and there is a large 
literature that examines the validity and reliability of measurement methods. To quote from 
Carmines and Zeller (1979, p. 16), “Reliability is basically an empirical issue, focusing on the 
performance of empirical measures … Validity …is evidenced in the degree that a particular 
indicator measures what it is supposed to measure rather than reflecting some other 
phenomenon.” Concerns regarding the use of alignment algorithms and of the accuracy of results 
based on alternative sets of parameter settings for alignment software are questions about the 
reliability of alignment methods. Discussions of the validity of alignment methods relate to the 
fidelity of, for example, diary data as a medium that conveys information about daily activity. 
Given that data on activity, migration, careers or whatever has been collected and has been 
recorded as character sequences, the validity bridge has been crossed. Researchers should rightly 
be concerned that alignment methods in general and parameter settings in particular identify 
similar individuals reliably. Examining this question is the objective here.  
 
 
2.  Sequence comparison methods 
 
2.1 Sequence alignment 
 
Pairwise alignments 
 
Writing a pair of sequences, one above another, creates some degree of alignment between 
sequence elements. Finding an optimal alignment involves transforming elements of one 
sequence into elements of the other using a defined set of operations. Optimality of alignment 
means that no alternative arrangement of matching characters and inserted gaps can give a higher 
similarity (or lower distance) score than the one found using only eligible operations. Eligible 
operations in most pairwise alignment algorithms are identities (or exact matches), substitutions 
(or inexact matches), insertion of an element from one sequence into the other, and the converse 
operation of deletion of an element. Gaps are created in either sequence, as necessary, to 
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accommodate insertions and deletions. Insertions and deletions are descriptions of the same 
operation from the perspective of one or other sequence in the pair. They always occur in pairs 
and are usually called indels.  
 
Alignment algorithms can be designed to calculate either distances between sequences or 
similarities. In this paper, the discussion will be mainly in terms of similarities but all comments 
apply equally to analyses based on distances. A matrix of similarities is computed for all pairs of 
members in the experimental sequences and these form the basis of the comparisons of 
classification effectiveness. 
 
Indel and matching penalties 
 
The experiments use a similarity value of 10 for matches, zero for mismatches, and separate 
opening and extension penalties for indels. Previous research indicates that lower indel costs 
give better results than higher costs so values of 1.0 for the opening penalty and 0.1 for the 
extension penalty are used.  
 
Substitutions and partial matches 
 
Concern has been expressed by some writers that alignment applications should incorporate 
carefully constructed and theoretically sound substitution premiums (or penalties). One strategy 
often suggested is to examine transition probabilities among events. The argument is that events 
with low transition probabilities are unrelated and their substitution should be penalized more 
severely than mismatches among events that are related in the form of event chains.  
 
An experiment with a set of similarities derived from transition matrices is included. The 
similarity values employed are based on the ratios of the observed transition probabilities. A 
transition of a character to itself is a match and scores 10. The substitution score for the most 
frequent transition to another character is set to 6 and less frequent transitions are given 
proportionately lower scores. The actual transition rates did not vary much so the tabulated 
scores took values only from 4 to 6. 
 
2.2 Hamming (Euclidean) sequence similarity  
 
The Hamming similarity is simply a count of matches between characters at corresponding  
positions in the sequences ai and bj. Sequences must be the same length, a constraint not 
applicable to alignments. Where more than one dimension is involved and the indicators are 
measured by real numbers, a distance can be derived that has Euclidean properties, but this 
collapses to a count of matches or mis-matches (i.e. the Hamming measure) where one binary 
measure is available as in the case of character comparisons.  
 
The Hamming measure can be interpreted as an extreme case of alignment in which all indels are 
suppressed by high penalties and substitutions are scored as zero, leaving only exact matches as 
positive scores. Tests of the alignment algorithm that set the gap penalty to 100 gave exactly the 
same scores as the Hamming measure. If sequences are very similar, we may expect to find that 
the Hamming measure performs fairly well in comparison with alignments because the 
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probability of a match at any position is high. Alignment measures should be relatively better for 
fuzzier sequence generation processes, which present more difficult classification problems. 
 
2.3 Character counting 
 
Another way of comparing sequences is simply to count the number of characters of each type, 
creating a vector of frequencies that would add up to the sequence length. This approach ignores 
the sequential arrangement of elements and involves only counts of elements. It is analogous to 
the time budget representation of daily activities, which adds up episode durations, ignores their 
timing and transition, and reports only total time spent by activity category. At face value this 
would seem to be a poor representation of the information in sequential data, but its simplicity 
and ease of use demands that its reliability be tested also. No inter-item similarity measures are 
necessary because each item already consists of numerical measurements and clustering methods 
can be applied directly to the input data.  
 
 
3. Software and data 
 
3.1 Pairwise similarity and clustering 
 
The pairwise alignment scores were computed using ClustalG. This is a version of ClustalW, 
which was developed at the European Molecular Biology Laboratory (Thompson et al, 1994), 
amended for use outside of biochemistry and is available from cwilson@cmhc-schl.gc.ca. 
ClustalG has deleted the explicitly biochemical features of its parent packages. ClustalG uses the 
Needleman-Wunsch algorithm for its computation of pariwise similarities. The results may be 
replicated by any software that implements that algorithm. 
 
ClustalG writes pairwise similarity values to an output file. Hamming similarity measures were 
calculated from input sequences by the Statistical Analysis System (SAS). We transformed all 
similarity matrices to distance matrices by subtracting similarity scores from the maximum 
similarity, then used the Ward clustering algorithm implemented in the SAS CLUSTER 
procedure to compare how well different measurement approaches identified known patterns in 
the test sequences. The Ward algorithm was one of a small number that perfectly classified the 
simplest set of synthetic sequences and so was used in the whole experiment.  
 
3.2  Monte Carlo sequence generation 
 
The Monte Carlo simulator written for this project produced sequences of the six letters, A to F, 
in a format known as “Pearson” or “Fasta” shown below. The experiments used 50 character 
sequences. The Courier font is convenient for illustrating sequence data because all characters 
are the same width. The “greater than” sign begins the record followed by the identifier. The data 
sequence follows on the next line. 
 
>  #1   
ADBBEBDDAAADAABAACBCFBABFCFCDACBFECAFBBBACECBCBBCC 
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The patterns in the Monte Carlo sequences are produced by eight generation rules. The 
generators define patterns on the basis of negative exponential probabilities to the first and 
second powers and uniform probability distributions. The probability of the occurrence of a 
patterned character is a function of its position in the sequence. A parameter called PROB varies 
from zero to one and controls the portion of the probability space that is used for patterned 
characters, versus the proportion used for residual or “noisy” characters. Residual characters are 
equally probable in the space not occupied by patterned characters. Higher values of PROB 
reduce noise and create clearer patterns. Table 2 defines the generation rules and shows the 
probability spaces for patterned characters and for the residual characters.  
 

 
Table 2: Eight Monte Carlo Sequence Generation Rules 

 
Rule identifier 

 
Function Description Probability space 

ABnex Negative 
exponential  

 [A] located in the initial positions 
and [B] located towards the right 
end of the sequence. Other 
characters are uniformly located 
across the sequence. 
Pattern letters: A, B 
Residual: C, D, E, F 
 

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51

P osi t i on

A

B

C,D,E,F

P = PROB*exp(-.046*k) 
BAnex 
EFnex 
FEnex 

Negative 
exponential 

 [B] and [A] reversed from ABnex.
 Pattern letters: B, A 
 Residual: C, D, E, F 

 
As ABnex 

BCnx2 
 
DEnx2 

Second 
order 
negative 
exponential  
 

[C] is concentrated in left and right 
positions. [B] located in left-centre.
Pattern letters: B, C 
Residual: A, D, E, F 
 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51

P osi t i on

A,D,E,F

C
B

C

P = 0.2*PROB*exp(.21*k-.007*k2) 

ABC75 
DEF75 

Uniform  
 

Majority of letters A, B, and C but 
no left-right trend. PROB not used.

Probability (A or B or C) = 0.75 
Probability (D or E or F) = 0.25 

 
 
Sequences generated by the same rule will all be different because the selection of a letter at 
each position is probabilistic. However, sequences will share characteristics written into the 
generation rules. Sequences generated by different rules should be recognizably different but, 
given the probabilistic nature of the processes, it is possible for individual sequences to resemble 
those made by different rules. Figure A1 in the appendix shows two examples of each of the 
eight sequence types for PROB set to 0.80. The sequences are highly distinct and identification 
of the generators is left as an exercise for interested readers. Identification of examples from 
other datasets is considerably more difficult.  
 
3.4 Performance of the generator 
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Table 3 shows the probabilities of each character expected in a 50-character sequence with 
PROB set to 0.5 and the default exponential parameters. The 240 sequences contain 12,000 
characters and the table also shows the expected and actual character counts. The residual 
characters in the exponential generation rules will always have theoretical probabilities of one 
quarter of the value (1 – PROB), or 12.5 percent when PROB is 0.5. The probabilities of the 
characters set by the exponential functions are derived by integrating the functions from zero to 
50. Chi-squared tests of the actual character counts indicate that frequencies are not significantly 
different from those expected.  
 
 

Table 3: Probabilities of characters generated by eight rules 
 
 Character distribution (%)  

Generation rule A B C D E F # chars 
ABC75 25 25 25 8 8 9 1500 
DEF75 8 8 9 25 25 25 1500 
ABnex 20.1 29.9 12.5 12.5 12.5 12.5 1500 
BAnex 29.9 20.1 12.5 12.5 12.5 12.5 1500 
EFnex 12.5 12.5 12.5 12.5 20.1 29.9 1500 
FEnex 12.5 12.5 12.5 12.5 29.9 20.1 1500 
BCnx2 12.5 19.8 30.2 12.5 12.5 12.5 1500 
DEnx2 12.5 12.5 12.5 19.8 30.2 12.5 1500 
        
Character counts        
   expected 1995 2105 1900 1729 2261 2110 12000 
   observed 1983 2105 1903 1744 2223 2042 12000 

 
 
3.5 Test data 
 
Sequence similarity was measured for sets of 240 sequences composed of 30 sequences 
generated under each of the eight rules. Each experiment employed four sequence sets using 
different levels of the PROB parameter. The PROB80 set, based on a PROB value of 0.8, 
distinguishes very clearly among the eight generation rules. PROB was set to 0.50, 0.35, and 
0.20, presenting progressively more difficult classification problems.  
 
All sets were aligned with ClustalG to calculate similarity matrices using the global pairwise 
algorithm with a gap opening penalty of 1.0 and an extension penalty of 0.1. The Hamming 
similarity matrices and character counts for each set were also calculated. The experiment thus 
evaluates three analytical strategies for each sequence set. An analysis of variance of the 
similarity matrices produced very high F statistics for models that identified all possible 
combinations of within group and between group comparisons, indicating that an eight-way 
subgroup structure exists in the test data. Cluster analysis was then conducted on all matrices to 
see which similarity measure produced the best reconstruction of the original eight groups.  
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4.  Evaluation of measures of sequence similarity 
 
The inter-sequence distance data generated by the similarity algorithms was subjected to 
hierarchical clustering to produce tree structures defining similar groups. Clusters are formed at 
all levels of aggregation from the initial joining of individual pairs to the combination of large 
groups into a final tree. The selection of a correct or meaningful set of clusters is usually part of 
the objective of the research. Eight clusters are built into this experiment by the generator but the 
number of clusters in a research project would have to be justified in the context of the research 
problem.  
 
Identification of clusters on the basis of their membership is simple when subsets in the data are 
distinct, as in the PROB80 sets, but becomes difficult when subsets are indistinct. The 
probabilistic determination of character frequency and location means that sequences generated 
by different rules may have a similar appearance, allowing clustering algorithms to join 
sequences from different generation rules in the tree building process. The BCnx2, ABnex, and 
BAnex rules tend to produce some sequences that are similar at low PROB values. Developers of 
classification trees identify nodes by the characteristic that contributes most of the members and 
call this practice the “plurality rule” (Breiman et al, 1984). We follow this practice, identifying a 
cluster with the rule that contributes the most members, but call the latter the main rule.  
 
For the PROB80 datasets, the identification of clusters in terms of the proportion of members 
contributed by the main rule can be considered definitive because the sequence appearance can 
be reliably associated with particular generation rules. In fact, PROB80 was chosen because 
some similarity measures could cluster the datasets perfectly at that level of uniformity. 
However, as the classification problem becomes more difficult, a given sequence may be 
generated by one rule but may resemble those created by another. At PROB35 or PROB20, the 
generation of a sequence by a rule is no longer sufficient reason to believe that the sequence 
must look like others made by the same rule and the assignment of the sequence to a different 
rule is not necessarily an error. At the lower PROB values, the classification problem evolves 
from one of evaluating a candidate assignment against a true criterion, to a problem of measuring 
the agreement of independent raters.  
 
The literature on rating agreement is extensive as the problem is central to many fields, including 
medical diagnostics, psychological testing, educational testing and others (Agresti, 1996, 
Mackinnon, 2000). The consensus regarding testing is that simple measures of agreement 
between raters (or concordance) should be used.  
 
An 8x8 contingency table will disaggregate the membership of each identified cluster into the 
rules that generated the sequences. The marginal values of such a table are the rule counts and 
cluster sizes. Marginal totals are all 30 for the generation rules and are variable but sum to 240 
for the clusters. The diagonal cells count the number of agreements between the generation rules 
and the cluster membership. The sum of the diagonal elements gives the total concordance, 
which, divided by 240, gives the proportional agreement or the proportion of the sequences from 
the main rule in all clusters. These ratios will be the main indices of classification success.   
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It should be emphasized that the objective here is to measure relative agreement rates of different 
methods, not to test the independence of ratings. If the classification procedures are effective we 
would expect statistical tests to reject a hypothesis of independence between generation rules and 
clusters. Chi-squared statistics for some tables exceeded 400, which for 49 degrees of freedom, 
does in fact reject.  
 
The mixing of appearances of sequences generated by different rules has parallels in ordinary 
behaviour. Diary data that records activities will contain some random content. The activities of, 
for example, an employed man could be the same as those of a retired woman on a particular day 
if unusual events occur, even though the typical patterns of these two types are vastly different. 
A sequence classification would, properly, include both of these patterns in one group for that 
day. Identification of individuals grouped in this way according to their socioeconomic 
characteristics is another research problem. 
 
 
5.  Results 
 
5.1 Similarity statitstics 
 
Table 4 shows the averages of the means and standard deviations of the alignment scores and the 
Hamming similarities for the ten sets of PROB80 and PROB20 sequences. The table contains 
statistics for the whole matrix and for the sub-matrices of within-rule and between-rule sequence 
comparisons.  
 
The 240 sequences in a set generate 28,680 unique sequence similarity comparisons. No 
similarity is defined for a sequence with itself. Every similarity matrix is composed of 36 sub-
matrices of within-rule and between-rule comparisons. The eight within-rule sub-matrices are 
symmetrical so the 30 sequences have 435 unique comparison pairs. These are the diagonal cells 
of Table A1. The 28 between-rule matrices contain 30x30 combinations of inter-rule 
comparisons and thus each has 900 comparison pairs. Thus, the observed similarities from a 
sample of sequences will be dominated by inter-group comparisons (if meaningful groupings can 
be shown to exist).  
 
The alignment mean score was 182 for the PROB80 dataset and increased to 233 for PROB20. 
Means for the whole matrices are significantly lower than any of the within-group means, 
indicating that the within-group similarities are higher than between-group similarities, as was 
intended. The Hamming similarities decline slightly as the sequences become less similar.  
 
An unexpected feature of the data in Table 4 is that average similarities are higher and less 
dispersed for the PROB20 sequences than for the PROB80 sequences, which are more 
distinctive. The explanation is that, although more distinctive sequences have higher mean 
within-rule similarities, they have lower between-rule similarities. Since the between-rule 
similarity matrices are twice as large as the within-rule matrices and are more numerous, the 
lower similarity values dominate the whole matrix. The means increase by less than five percent 
from the PROB50 to PROB35 datasets. This suggests that as the proportion of noise in the 
generation process becomes very large (more than 50%), the average similarity values stabilize.  
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Table4 
Descriptive statistics (PROB80, PROB50, PROB35 sequence sets) 

 
Classification 
problem 

n Alignment similarity Hamming similarity 

  mean stdev mean stdev 
Easy (PROB80)      
Whole matrix 28680 182 74 88 59 
Within rule 3480 316 37 195 63 
Between rule 25200 164 58 74 41 
      
Very hard 
(PROB20) 

     

Whole matrix 28680 233 23 84 28 
Within rule 3480 245 17 96 28 
Between rule 25200 230 23 82 27 
      

 
 
To give some context to the descriptive statistics for the experimental data set, we coded 391 
randomly selected diaries from the Statistics Canada 1992 General Social Survey of time use 
into six activity categories using 30 minute time intervals. The resulting activity sequences 
averaged 53 characters (because short episodes were rounded up), which is quite close to the 
length of the experimental sequences. An alignment with the local, high penalty settings gave a 
mean pairwise similarity score of 260 with a standard deviation of 65. The Monte Carlo 
sequences thus display lower similarities than time use diary data.  
 
5.2 Cluster analysis of three methods 
 
Table 5 shows all clusters present in the first PROB80 dataset. Note that alignments employ 
indels only and give no partial scores for substitutions. The table identifies the clusters and gives 
the size and the count of sequences contributed by the main rule for each cluster. For a simple 
classification problem, an ideal clustering will produce eight clusters of 30 sequences with all 
sequences from one rule in each cluster. For more complex classification problems, solution 
quality can only be defined in terms of a more reliable procedure, since sequences made by 
different rules can look very much alike in terms of the number, order and transition patterns of 
characters. Note that the character count results come from a clustering of character frequenies , 
not similarity matrices. 
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Table 5 
 PROB80 cluster analyses 

 
 Similarity matrix 

Cluster name Alignment Hamming Character count 
 Size # main 

rule  
Size # main 

rule 
Size # main 

rule 
ABC75 30 30 29 29 29 29 
DEF75 30 30 30 30 30 30 
ABnex 30 30 31 30 33 30 
BAnex 30 30 30 30 27 27 
EFnex 30 30 30 30 36 29 
FEnex 30 30 30 30 24 23 
BCnx2 30 30 30 30 31 30 
DEnx2 30 30 30 30 30 30 

Total 240 240 240 239 240 228 
% main rule  100  99.6  95.0 

 
All similarity measures, including the Hamming matrices, were highly reliable. Since at least one 
option could distinguish the generation rules perfectly, assignment of a sequence to a cluster 
generated by a different rule can be treated as an error. Table 6 shows the agreement rates for the 
four sequence sets based on pattern percentages of 80, 50, 35 and 20. 
 
 

Table 6 
Percent Agreement rates for cluster analysis of  

Monte Carlo Sequences 
 

Score 
 

Alignment Hammin
g 

Characte
r 

count 
PROB80 100.0 99.1 95.0 
PROB50 90.4 77.1 68.8 
PROB35 63.3 50.0 45.4 
PROB20 55.0 43.8 51.7 

 
Alignment similarity measures are more effective in recovering known patterns than either 
Hamming similarities or character counts at all levels of classification difficulty. The Hamming 
similarity and character counting gave excellent agreement for the simpler PROB80 
classification problem, but their agreement rates declined substantially for the PROB35 sets.   
 
A purely random assignment of 240 objects to eight clusters would be expected to produce 30 
correct assignments or 12.5 percent agreement. The PROB80 sequences present an analytically 
simple classification problem and all methods produce excellent agreement rates. As the 
classification problem becomes more subtle, the advantage of the alignment method increases 
until the noise proportion of the information rises to 80%. For the PROB20 sequences the 
relative advantage of alignment declines but it still remains most effective. Surprisingly, for the 
PROB20 data character counting (time budgets) increases its reliability and is nearly as accurate 
as alignment.  
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The results indicate that the clearest, least ambiguous classification strategy is to align with low 
gap penalties. This does not discriminate clusters perfectly even for the PROB80 datasets, 
although here it is highly reliable, exceeding 99% in multiple tests and scoring 100% in this 
example.  
 
5.3 Cluster analysis of alignments with substitutions 
 
Two additional alignments were performed on the PROB50 and PROB35 sequences. One 
employed the transition scoring matrices for the two sequence sets as described above with indel 
penalties set to 500. This completely suppressed indel operations and gives a variant of the 
Hamming results with much larger similarities. The second run for each sequence set used both 
the substitution matrix and the original indel values (1.0; 0.1). The substitution scores for each 
sequence set are shown in Table 7. As noted above, rewarding the most frequent non-identical 
transition with a score of 6 and less frequent transitions with lower scores yielded scoring 
matrices with little variability. Other systems are of course possible. 
 

Table 7 
Similarity scores for character substitutions 

 
PROB35 PROB50 

 a b c d e f   a b c d e f 
a 10 6 6 5 5 5  a 10 6 5 4 5 4 
b  10 5 5 4 4  b  10 4 4 4 4 
c   10 5 5 5  c   10 5 6 5 
d    10 5 6  d    10 5 6 
e     10 6  e     10 6 
f      10  f      10 

 
The agreement rates for the substitution experiments are shown in Table 8. The first row of 
results is reprinted from Table 6. The addition of these particular substitution scores reduces the 
effectiveness of the alignment classifications.  
 

Table 8 
Percent Agreement rates for alignments with substitution scores 

 
Alignment PROB50 PROB35 

Gap values Substitution matrix   
1, 0.1 none 90.4 63.3 
1, 0.1 yes 78.3 57.5 
500,500 (no gaps) yes 57.1 38.3 

 
While it is possible that further testing may find substitution rules that improve the accuracy of 
classification employing both substitution scores and gap penalties, I am not optimistic. If the 
objective is to find groups in samples that display similar behaviour as indicated by similar 
activity patterns, then it would be expected that the significance of substitution of one activity 
for another would be different for different groups. Appropriate substitution scores could only be 
determined after the groups have been identified and these should differ from group to group. 
From this perspective, the search for an ex ante general purpose substitution matrix is misguided.  
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6.            Strategies for alignment analysis of event sequences 
  
The most successful alignment strategy for identifying generation rules using all test datasets 
was to use very low gap penalties. Most social science alignment applications have used the 
algorithm with relatively high gap penalties. The conclusion from this experiment is that where 
the objective is classification the similarity and distance measures of event sequences that 
employ very low gap penalties can be clustered into clearer behavioural patterns than measures 
based on Hamming similarity or time budgets. 
 
An unexpected result that emerged from the analysis was that average sample similarities are 
higher among sequences with weaker patterns than those with stronger patterns. Strong patterns 
mean that inter-group similarities are low and there are more possible inter-group comparisons in 
a sample than within-group comparisons. Researchers may find highly distinctive behavioural 
groupings in samples with relatively low average similarity measures. Conversely, samples with 
relatively high average similarity may contain groups with indistinct behavioural patterns. 
Consideration of average similarity values points the researcher to populations with lower rather 
than higher scores.  
 
In real research situations, the analyst will not normally know how many, if any, patterns are 
present in the data because finding such patterns is probably the object of the research. There 
would then be no justification for picking a certain number of clusters to find. A possible 
strategy would be to deliberately set the number of clusters to be fairly high, say, the square root 
of the sample size. In this case that would be about 16. Groups identified in this way would 
generally be more homogeneous than the larger final clusters extracted in this experiment. By 
stopping the clustering procedure early, analysts can determine for themselves the best way to 
put the building blocks together.  
 
We do not interpret a mix of sequences from different rules as a classification error unless we 
have reason to believe that some method could have classified the groups perfectly, as in the 
case of the PROB80 dataset. Rather, we argue that different generation processes with some 
random elements simply do not produce highly distinct character sequences. We interpret the 
agreement rates quoted here as the lower bounds of the classification reliability. The true 
assessment of classification reliability can be made only in terms of a better classifier. To date, 
for broad classes of sequential social events, the most reliable classifiers are alignment 
algorithms.  
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Appendix 
 

Table A1 
Sample sequences from eight generation rules (PROB80 dataset) 

 
>  #1  ADBBEBDDAAADAABAACBCFBABFCFCDACBFECAFBBBACECBCBBCC 
>  #2  CEDBABDDCABBAACEECCDCBFDCBBCFFDAABBBAFECBAFBDBBCAB 
>  #3  AAFADADDCFCDEFDFEAEBEBEFDEFDCFFBBEDCFEEFCFCEDAFBDE 
>  #4  FFEDDDFFDEEDDEDFCCCDBCCFFBFDBDCEFDEDFDEBDFFDFFDCFF 
>  #5  AAFAAFADABAACBBAABBFBBBABABABBBBBEBBBBBBBBBDBBBEBA 
>  #6  EEADAFAACAAAAFABABADBAAEAFABBBAAAABBBBABDBBBBFBFBB 
> # 7  BBBBBBBDBABBADEBBABFAAFFFDABDDBAABAAEAAAAAAAAADABF 
> # 8  BBBBBFBABBABCBBABAADADBABDAFFABAABAAAAAAAAAAFAABDE 
> # 9  ECEEEFBFEEEEEEEEFCFABEAFEFFEEFFFAEFFDEFBFAFFCFFFFF 
> #10  EEDCEDEEEEFECFFFEEEFFFFACFEFFCFEFFFFFFEDDFFFFAFFEF 
> #11  FFFFEFFFFEFFFEAEDCFEFEAEBDDFFEAEFBEEEEFEEEEBBEEAEE 
> #12  FFFEFAFFBEECAEFEFFEEEEDEAFFBEECEFEEEBEEEEEEAAEEEAD 
> #13  CCBBBCBBBCBBCBBBBBBBBCCBBBBCCCCDCFCDCCCCCCFEFCFDCC 
> #14  BCCCCCBBBEBBBBBBBFECBABBBBCBECCCBDFCEACFCCCCCACCFE 
> #15  DDEDEEEDDBDDCDBDDDDDEECDEDECEDEEAFBECEEFEEEEEEEEEC 
> #16  DEDEDDEDDDEDDDDDDEDDDDDCEFEFEEDEEEEEEEEDEFEEEEEEEB 
 
Note: For input to ClustalG, sequence labels (>  #1 etc.) are on a line preceding the 
sequence data. 

 
 

Table A2 
Counts of Pairwise comparisons 

(all combinations of generation rules) 
 

  
 ABC75 DEF75 ABnex AB1-nx EFnex EF1-

nx 
BCnx2 DEnx2 

ABC75 
 

435 900 900 900 900 900 900 900 

DEF75 
 

 435 900 900 900 900 900 900 

ABnex 
 

  435 900 900 900 900 900 

AB1-nx 
 

   435 900 900 900 900 

EFnex 
 

    435 900 900 900 

EF1-nx 
 

     435 900 900 

BCnx2 
 

      435 900 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEnx2 
 

       435 

 
Within group    3480 
Inter-group     25200 
All                 28680 
 
 

 
 


